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4.3 Romberg Integration

We can view Romberg’s method as the natural generalization of the routine
gsimp in the last section to integration schemes that are of higher order than

Simpson’s rule. The basic idea is to use the results fkosnccessive refinements

of the extended trapezoidal rule (implementectirapzd) to remove all terms in
the error series up to but not includiig(1/N 2¥). The routinegsimp is the case

of k = 2. This is one example of a very general idea that goes by the name of
Richardson’s deferred approach to the limit: Perform some numerical algorithm for
various values of a parametgr and then extrapolate the result to the continuum

limit A = 0.

Equation (4.2.4), which subtracts off the leading error term, is a special case of:
polynomial extrapolation. In the more general Romberg case, we can use Neville’
algorithm (see§3.1) to extrapolate the successive refinements to zero stepsize.
Neville’s algorithm can in fact be coded very concisely within a Romberg integration
routine. For clarity of the program, however, it seems better to do the extrapolation

by subroutine call tgpolint, already given irg3.1.

SUBROUTINE qromb(func,a,b,ss)

INTEGER JMAX, JMAXP,K,KM

REAL a,b,func,ss,EPS

EXTERNAL func

PARAMETER (EPS=1.e-6, JMAX=20, JMAXP=JMAX+1, K=5, KM=K-1)

USES polint,trapzd
Returns as ss the integral of the function func from a to b. Integration is performed by
Romberg's method of order 2K, where, e.g., K=2 is Simpson’s rule.
Parameters: EPS is the fractional accuracy desired, as determined by the extrapolation
error estimate; JMAX limits the total number of steps; K is the number of points used in
the extrapolation.

INTEGER j
REAL dss,h(JMAXP),s(JMAXP) These store the successive trapezoidal approximations
h(1)=1. and their relative stepsizes.

do 11 j=1,JMAX
call trapzd(func,a,b,s(j),j)
if (j.ge.K) then
call polint(h(j-KM),s(j-KM),K,0.,ss,dss)
if (abs(dss).le.EPS*abs(ss)) return

endif

s(j+1)=s(j)

h(j+1)=0.25%h(j) This is a key step: The factor is 0.25 even though
enddo 11 the stepsize is decreased by only 0.5. This makes
pause ’too many steps in qromb’ the extrapolation a polynomial in h? as allowed
END by equation (4.2.1), not just a polynomial in h.

The routineqromb, along with its requiredcrapzd and polint, is quite

powerful for sufficiently smooth (e.g., analytic) integrands, integrated over intervals

which contain no singularities, and where the endpoints are also nonsingtdab,

in such circumstances, takes mamgny fewer function evaluations than either of

the routines ing4.2. For example, the integral

2
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converges (with parameters as shown above) on the very first extrapolation, after
just 5 calls totrapzd, while gsimp requires 8 calls (8 times as many evaluations of
the integrand) andtrap requires 13 calls (making 256 times as many evaluations
of the integrand).

CITED REFERENCES AND FURTHER READING:

Stoer, J., and Bulirsch, R. 1980, Introduction to Numerical Analysis (New York: Springer-Verlag),
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§67.4.1-7.4.2.
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4.4 Improper Integrals

For our present purposes, an integral will be “improper” if it has any of the
following problems:

e its integrand goes to a finite limiting value at finite upper and lower limits,
but cannot be evaluatetyht on one of those limits (e.gsin z/z atx = 0)
its upper limit isco , or its lower limit is —oco
it has an integrable singularity at either limit (e.g,/? atz = 0)
it has an integrable singularity at a known place between its upper and
lower limits

e it has an integrable singularity at an unknown place between its upper

and lower limits

If an integral is infinite (e.g.flOO x~'dx), or does not exist in a limiting sense
(e.g.,ffoOO cos zdx), we do not call it improper; we call it impossible. No amount of
clever algorithmics will return a meaningful answer to an ill-posed problem.

In this section we will generalize the techniques of the preceding two sections
to cover the first four problems on the above list. A more advanced discussion o
guadrature with integrable singularities occurs in Chapter 18, nofdléy8. The
fifth problem, singularity at unknown location, can really only be handled by the
use of a variable stepsize differential equation integration routine, as will be given
in Chapter 16.

We need a workhorse like the extended trapezoidal rule (equation 4.1.11), bu
one which is amopen formula in the sense ¢#4.1, i.e., does not require the integrand
to be evaluated at the endpoints. Equation (4.1.19), the extended midpoint rule, is th
best choice. The reason is that (4.1.19) shares with (4.1.11) the “deep” property o
having an error series that is entirely evervirindeed there is a formula, not as well
known as it ought to be, called tt8econd Euler-Maclaurin summation formula,
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